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lattice QCD contribution to RHIC science

•Study Equation of States (EoS)

•QCD phase diagram

•QCD critical point

•Fluctuations of conserved charges

•Extracting freeze-out parameters

•Transport properties of QCD matter
Challenges

•Higher chemical potential

•More precision

•Increasing signal to nose ratio

•Inverse problems



ML for LQCD challenges

•Uncertainties must be qualified and kept under control

•Exactness guarantee must be done

üMathematical proof is required, heuristic approach is not enough

•ML approach should be useful: be “faster” or “better”

übad ML model => results correct and slow and/or uncertainties diverge

ügood ML model => results correct and faster and/or with smaller uncertainties

could help but should be used with caution



Examples of ML-based approaches to 
obtain solution “faster”



Universal tools

•Tunning hyperparameters of lattice QCD algorithms

•Development of neural preconditioners

•Improving stochastic estimators

used both in measurements and generation

Can we get more precise result with improved algorithms?
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Measurements

•Observables calculation takes similar or larger than generation resources

•Use ML regression to compute them faster

Ɇὔconfigurations, ὔ ὔ measurements of ὕ, ὔ measurements are used for training

• effective samples size is increased from ὔ ὔ to ὔ

•Correct bias
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observable regression

Can we decrease time for observable measurements and get higher statistics?

B. Yoon, T. Bhattacharya, R. Gupta, Phys. Rev. D 100, 014504 (2019)



Configuration generation
with normalizing flows
Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
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train/optimizeExactness guarantee is done via correction

ήὟ to ὴὟ using reweighting of building

MCMC chain



Coupling layer based normalizing flows

ɆὟ Ὢὠ

•Some conditions to Ὢapply

ɆὪparametrized with NN

•Self training –no expensive samples needed

Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
[Rezende & Mohamed 1505.05880]



Normalizing flows: better mixing

Example of under sampling of some region of 

target probability density Example of improving topological sampling with NF 

comparing to other techniques (HB, HMC) in U(1) LGT in 2D

U(1) lattice gauge theory in 2D

Phys. Rev. Lett. 125, 121601 (2020)



Normalizing flows: better uncertainty 
qualification at finite statistics

Determination of topological mixing is difficult due 

to UV fluctuations

Example of improving uncertainty estimation for finite 

statistics

Lattice Schwinger model near criticality

arXiv:2202.11712
arXiv:2202.11712

Ground truth



Normalizing flows is a promising technique 
from ML for solving challenges LQCD for 

RHIC faces

Can we generate ensembles with larger lattice in temporal direction?

Can we decrease lattice spacing?

Can we get better mixing and use reweighting more efficiently?



Examples of ML-based approaches to 
obtain “better” solution



Thermodynamical properties of QGP and 
EoS with normalizing flows

Example free energy computation

Lattice scalar field theory

The fundamental difficulty is that MCMC 

is not able to directly estimate the 

partition function of the lattice field 

theory.

Normalizing flows have direct access to 

partition function
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K. A. Nicoli, C. J. Anders, L.Funcke, T. Hartung, K. Jansen, P. Kessel, 

S. Nakajima, P. Stornati, Phys. Rev. Lett. 126, 032001 (2021)

Can we compute QCD EoS with higher precision?



Compute QCD phase diagram in (T, mu) 
with normalizing flows

Demonstration of flow-based Density of State 
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Direct MCMC simulations of QCD at nonzero chemical 

potential is not tractable due to Sign Problem

Several approaches use MCMC simulations at zero 

and/or imaginary chemical potential

Simulations at several values of imaginary chemical 

potential required in order to do extrapolation to real 

region

After training Normalizing flow model gives access to 

“all” values of imaginary chemical potentialJan M. Pawlowski1 and Julian M. Urban, 

https://arxiv.org/pdf/2203.01243.pdf

Can we get larger chemical potential?



Increase signal to noise ratio via contour 
deformation

Demonstration in SU(3) gauge theory in 2DVariable transformation does not change integral
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but changes uncertainties

transformation Ὗ ὪὟ is optimized such that 

ὺὥὶὗ Ḻὺὥὶὕ
W. Detmold, G. Kanwar, H. Lamm, M.L. Wagman, N. C. Warrington, 

Phys. Rev. D 103, 094517 (2021)

Can we apply it for viscosity computations in full QCD?



Reconstructing QCD Spectral Functions 
with Gaussian Processes

Demonstration of extraction Ghost spectral 

function in 2 + 1 LQCD; band shows uncertainty.Spectral functions are extracted from lattice QCD 

correlator using inverse integral transformation which 

is ill-defined problem

Reconstruction using Gaussian Process Regression

what is most probably value and uncertainty of ”
given some observations Ὃὸ with uncertainties 

J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J. Turnwald, J. M. Urban, N. Wink, S. Zafeiropoulos, 

Phys.Rev.D105, 036014 (2022)

Did we improve a solution of inverse problem?



Outlook
Some Machine learning 

techniques proved their usefulness 

for lattice QCD simulations.

They give a hope for solving RHIC 

challenges in near future.

However, majority of results were 

demonstrated in toy models 

requiring further development 

before providing useful data.
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